Sodium transport in plant cells.

نویسندگان

  • E Blumwald
  • G S Aharon
  • M P Apse
چکیده

Salinity limits plant growth and impairs agricultural productivity. There is a wide spectrum of plant responses to salinity that are defined by a range of adaptations at the cellular and the whole-plant levels, however, the mechanisms of sodium transport appear to be fundamentally similar. At the cellular level, sodium ions gain entry via several plasma membrane channels. As cytoplasmic sodium is toxic above threshold levels, it is extruded by plasma membrane Na(+)/H(+) antiports that are energized by the proton gradient generated by the plasma membrane ATPase. Cytoplasmic Na(+) may also be compartmentalized by vacuolar Na(+)/H(+) antiports. These transporters are energized by the proton gradient generated by the vacuolar H(+)-ATPase and H(+)-PPiase. Here, the mechanisms of sodium entry, extrusion, and compartmentation are reviewed, with a discussion of recent progress on the cloning and characterization, directly in planta and in yeast, of some of the proteins involved in sodium transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sodium transport system in plant cells

Since sodium, Na, is a non-essential element for the plant growth, the molecular mechanism of Na(+) transport system in plants has remained elusive for the last two decades. The accumulation of Na(+) in soil through irrigation for sustainable agricultural crop production, particularly in arid land, and by changes in environmental and climate conditions leads to the buildup of toxic level of sal...

متن کامل

AtHKT1;1 Mediates Nernstian Sodium Channel Transport Properties in Arabidopsis Root Stelar Cells

The Arabidopsis AtHKT1;1 protein was identified as a sodium (Na⁺) transporter by heterologous expression in Xenopus laevis oocytes and Saccharomyces cerevisiae. However, direct comparative in vivo electrophysiological analyses of a plant HKT transporter in wild-type and hkt loss-of-function mutants has not yet been reported and it has been recently argued that heterologous expression systems ma...

متن کامل

Antagonistic Activity of Fructoplane Yeast Against Ulocladium Rot of Papaya

Debaryomyces hanseniZopf isolated from the fructoplane of apples were found to be effective as biocontrol agent against rot of papaya caused by Ulocladium. chartarum(Pr.) Simm. The ability of D. hansenii to prevent infection of U. chartarum was lost when the antagonist cells were killed by autoclaving. Cell free culture filtrates of antagonist were unable to prevent disease incidence. Efficacy ...

متن کامل

Sodium transporters in plants. Diverse genes and physiological functions.

Soil salinity represents an increasing threat to agricultural production. High sodium (Na) concentrations in soils are toxic to most higher plants. More than 40% of irrigated lands worldwide show increased salt levels. Several studies have shown that under saline conditions, Na influx into root cells occurs via Na permeable transporters (Amtmann et al., 1997; Roberts and Tester, 1997; Tyerman e...

متن کامل

AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis.

Urea is the major nitrogen form supplied as fertilizer in agricultural plant production but also an important nitrogen metabolite in plants. We report the cloning and functional characterization of AtDUR3, a high-affinity urea transporter in plants. AtDUR3 contains 14 putative transmembrane-spanning domains and represents an individual member in Arabidopsis that belongs to a superfamily of sodi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1465 1-2  شماره 

صفحات  -

تاریخ انتشار 2000